

LOW THERMAL EXPANSION ADHESIVES

Low Thermal Expansion adhesives are specifically designed to provide maximum adhesion while maintaining a balance of other important properties such as pot life, cure time & temperature, low thermal expansion, Glass transition temperature, dielectric properties etc.

These high performance adhesives are used for bonding and sealing critical high technology applications. They are recommended for bonding metals that will be subjected to thermal shock and temperature ranges from -65°C to 230°C. The fully cured products provide excellent dielectric properties, and very good thermal shock & impact resistance. They also have good resistance to weather, water, most petroleum products, mild acids & alkalis, and many other chemicals. **All adhesives meet NASA outgassing requirements.**

EPOXIBOND		EB-301	EB-304	EB-304LV	EB-309	EB-315	EB-348
Hardener		EH-4	EH-5C	EH-5C	EH-5C	EH-3	PART-B
FEATURES		High bond strength	High bond strength	High bond strength	Very Low Expansion	High Temp. Resistance	High Temp. Resistance
Mix ratio by weight (Epoxibond/Hardener)		100/1	100/5	100/5	100/5	100/5.5	100/5
Viscosity @ 25°C	cps	Paste	53,000	30,000	Paste	Paste	Paste
Pot life (100 grams)		1 hr @ 25°C	1 hr @ 25°C	1½ hr @ 25°C	1½ hr @ 25°C	2 hrs @ 100°C	2 hrs @ 100°C
Shelf Life @ 25°C		2 years	2 year	2 year	2 year	1 year	1 year
Recommended Cure		2 hrs @ 100°C	2 hrs @ 100°C	2 hrs @ 100°C	2 hrs @ 100°C	1 hr @ 100°C+ 2 hrs @150°C	1 hr @ 100°C+ 2 hrs @150°C
Alternate Cure		24-48 hrs @ 25°C	24 hrs @ 25°C	24 hrs @ 25°C	24 hrs @ 25°C	1 hr @ 165°C	1 hr @ 165°C
TYPICAL CURED PROPERTIES							
Color		Beige	Light Green	Light Green	Green Tan	Beige	Black
Specific Gravity		1.8	1.84	1.84	1.7	1.8	1.75
Hardness	Shore D	91	92	90	92	92	93
Lap shear strength to Aluminum @ 25°C	psi	2100	2300	2300	2300	2100	2000
Glass Transition Temperature	°C	80	84	82	84	175	194
Coefficient of Thermal Expansion	10 ⁻⁶ /°C	32	25	25	18	25	23
Service Temperature Range	°C	-65°C to 120°C	-65°C to 130°C	-65°C to 130°C	-65°C to 130°C	-65°C to 200°C	-65°C to 230°C
Dielectric Strength (3mm thickness)	Volts/mil	410	430	430	430	420	410
Dielectric Constant	@ 1 kHz	5.6	4.8	4.8	4.8	5.6	4.3
Dissipation Factor	@ 1 kHz	0.004	0.007	0.007	0.007	0.004	0.08
Volume Resistivity	Ohm-cm	5x10 ¹⁵	2x10 ¹⁵	2x10 ¹⁵	2x10 ¹⁵	5x10 ¹⁵	3x10 ¹⁵

DISCLAIMER: All data given here is offered as a guide to the use of these materials and not as a guarantee of their performance. The user should evaluate their suitability for own purposes. Properties are typical and should not be used in preparing specifications. Statements are not to be construed as recommendations to infringe any patent.